Understanding FEDOF in easifem (Part 3)
· 2 min read
FEDOF
note
In this note we will study the FEDOF for scalar field using H1 conforming Hierarchical basis functions. The main focus is on generating quadrature points and shape functions.
In this note we will focus on 2D mesh with quadrilateral.
Scalar FEDOF
Initiate the FEDOF object and scalar field by using the following code.
CALL u%ImportFromToml(tomlName="u", fedof=fedof, dom=dom, filename=tomlFileName)
CALL fedof%Display(msg="FEDOF info: ")
Getting quadrature points
The following code gets the quadrature points in an element.
CALL fedof%GetQuadraturePoints(quad=qp, globalElement=1, islocal=yes)
CALL Display(qp, "Quadrature points: ")
Quadrature points
| x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15 | x16 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -0.861136 | -0.861136 | -0.861136 | -0.861136 | -0.339981 | -0.339981 | -0.339981 | -0.339981 | 0.339981 | 0.339981 | 0.339981 | 0.339981 | 0.861136 | 0.861136 | 0.861136 | 0.861136 |
| -0.861136 | -0.339981 | 0.339981 | 0.861136 | -0.861136 | -0.339981 | 0.339981 | 0.861136 | -0.861136 | -0.339981 | 0.339981 | 0.861136 | -0.861136 | -0.339981 | 0.339981 | 0.861136 |
| 0.121003 | 0.226852 | 0.226852 | 0.121003 | 0.226852 | 0.425293 | 0.425293 | 0.226852 | 0.226852 | 0.425293 | 0.425293 | 0.226852 | 0.121003 | 0.226852 | 0.226852 | 0.121003 |
