Chebyshev1GaussQuadrature
This routine computes the n Gauss-Quadrature points.
All Gauss-Quadrature points are inside
Interface
- ܀ Interface
- ️܀ See example
- ↢
INTERFACE
MODULE SUBROUTINE Chebyshev1GaussQuadrature(n, pt, wt)
INTEGER(I4B), INTENT(IN) :: n
!! It represents the order of Chebyshev1 polynomial
REAL(DFP), INTENT(OUT) :: pt(:)
!! the size is 1 to n
REAL(DFP), OPTIONAL, INTENT(OUT) :: wt(:)
!! the size is 1 to n
END SUBROUTINE Chebyshev1GaussQuadrature
END INTERFACE
This example shows the usage of Chebyshev1GaussQuadrature method.
This routine returns the quadrature points for Chebyshev1 polynom.
program main
use easifembase
implicit none
integer( i4b ) :: n
real( dfp ), allocatable :: pt( : ), wt( : )
type(string) :: msg, astr
n = 3
call reallocate(pt, n, wt, n)
call Chebyshev1GaussQuadrature( n=n, pt=pt, wt=wt )
msg = "Chebyshev1 Gauss Quadrature n = " // tostring( n )
call display(msg%chars())
astr = MdEncode( pt .COLCONCAT. wt )
call display( astr%chars(), "" )
end program main
Results
| pt | wt |
|---|---|
| -0.86603 | 1.0472 |
| 1.03412E-13 | 1.0472 |
| 0.86603 | 1.0472 |
Chebyshev-Gauss Quadrature points
Chebyshev1 Gauss Quadrature n = 1
| 1.03412E-13 | 3.1416 |
Chebyshev1 Gauss Quadrature n = 2
| -0.70711 | 1.5708 |
| 0.70711 | 1.5708 |
Chebyshev1 Gauss Quadrature n = 3
| -0.86603 | 1.0472 |
| 1.03412E-13 | 1.0472 |
| 0.86603 | 1.0472 |
Chebyshev1 Gauss Quadrature n = 4
| -0.92388 | 0.7854 |
| -0.38268 | 0.7854 |
| 0.38268 | 0.7854 |
| 0.92388 | 0.7854 |
Chebyshev1 Gauss Quadrature n = 5
| -0.95106 | 0.62832 |
| -0.58779 | 0.62832 |
| 1.03412E-13 | 0.62832 |
| 0.58779 | 0.62832 |
| 0.95106 | 0.62832 |
Chebyshev1 Gauss Quadrature n = 6
| -0.96593 | 0.5236 |
| -0.70711 | 0.5236 |
| -0.25882 | 0.5236 |
| 0.25882 | 0.5236 |
| 0.70711 | 0.5236 |
| 0.96593 | 0.5236 |
Chebyshev1 Gauss Quadrature n = 7
| -0.97493 | 0.4488 |
| -0.78183 | 0.4488 |
| -0.43388 | 0.4488 |
| 1.03412E-13 | 0.4488 |
| 0.43388 | 0.4488 |
| 0.78183 | 0.4488 |
| 0.97493 | 0.4488 |
Chebyshev1 Gauss Quadrature n = 8
| -0.98079 | 0.3927 |
| -0.83147 | 0.3927 |
| -0.55557 | 0.3927 |
| -0.19509 | 0.3927 |
| 0.19509 | 0.3927 |
| 0.55557 | 0.3927 |
| 0.83147 | 0.3927 |
| 0.98079 | 0.3927 |
Chebyshev1 Gauss Quadrature n = 9
| -0.98481 | 0.34907 |
| -0.86603 | 0.34907 |
| -0.64279 | 0.34907 |
| -0.34202 | 0.34907 |
| 1.03412E-13 | 0.34907 |
| 0.34202 | 0.34907 |
| 0.64279 | 0.34907 |
| 0.86603 | 0.34907 |
| 0.98481 | 0.34907 |
Chebyshev1 Gauss Quadrature n = 10
| -0.98769 | 0.31416 |
| -0.89101 | 0.31416 |
| -0.70711 | 0.31416 |
| -0.45399 | 0.31416 |
| -0.15643 | 0.31416 |
| 0.15643 | 0.31416 |
| 0.45399 | 0.31416 |
| 0.70711 | 0.31416 |
| 0.89101 | 0.31416 |
| 0.98769 | 0.31416 |