QuadraturePoint
Returns quadrature points on hexahedron.
Interface 1
- ܀ Interface
- ️܀ Example 1
- Example 2
- Example 3
- ↢
INTERFACE QuadraturePoint_Hexahedron
MODULE FUNCTION QuadraturePoint_Hexahedron1( &
& order, &
& quadType, &
& xij, &
& alpha, &
& beta, &
& lambda) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: order
!! order of integrand in x, y, and z direction
INTEGER(I4B), INTENT(IN) :: quadType
!! quadrature point type
!! GaussLegendre
!! GaussLegendreLobatto
!! GaussLegendreRadauLeft
!! GaussLegendreRadauRight
!! GaussChebyshev1
!! GaussChebyshev1Lobatto
!! GaussChebyshev1RadauLeft
!! GaussChebyshev1RadauRight
!! GaussUltraspherical
!! GaussUltrasphericalLobatto
!! GaussUltrasphericalRadauLeft
!! GaussUltrasphericalRadauRight
!! GaussJacobi
!! GaussJacobiLobatto
!! GaussJacobiRadauLeft
!! GaussJacobiRadauRight
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! nodal coordiantes of hexahedron in xij format
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha
!! Jacobi parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: beta
!! Jacobi parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: lambda
!! Ultraspherical parameter
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! quadrature points in xij format
END FUNCTION QuadraturePoint_Hexahedron1
END INTERFACE QuadraturePoint_Hexahedron
orderorder of accuracy in x, y, and z directions.
xijxijcontains nodal coordinates of hexahedron inxijformat.- The number of rows in
xijis 3 - The number of columns in
xijis 8 - If xij is absent then biunit hexahedron is assumed.
- The number of rows in
quadTypequadTypeis quadrature point type, it can take following valuesGaussLegendreGaussLegendreLobattoGaussLegendreRadauLeftGaussLegendreRadauRightGaussChebyshevGaussChebyshevLobattoGaussChebyshevRadauLeftGaussChebyshevRadauRightGaussJacobiGaussJacobiLobattoGaussJacobiRadauLeftGaussJacobiRadauRightGaussUltrasphericalGaussUltrasphericalLobattoGaussUltrasphericalRadauLeftGaussUltrasphericalRadauRight
alpha, beta, lambdaalphaandbetaare parameters for Jacobi quadrature pointslambdais the parameter for Ultraspherical quadrature points
program main
use easifembase
implicit none
integer( i4b ) :: i1, i2, order
real( dfp ), allocatable :: x(:,:)
type(string) :: astr
order=1
x = QuadraturePoint_Hexahedron( &
& order=order, &
& quadType=GaussLegendre )
call display(x, "ans:")
order=2
x = QuadraturePoint_Hexahedron( &
& order=order, &
& quadType=GaussLegendre )
call display(x, "ans:")
end program main
program main
use easifembase
implicit none
integer( i4b ) :: i1, i2, order
real( dfp ), allocatable :: x(:,:)
type(string) :: astr
order=1
x = QuadraturePoint_Hexahedron( &
& order=order, &
& quadType=GaussLegendreLobatto )
call display(x, "ans:")
order=2
x = QuadraturePoint_Hexahedron( &
& order=order, &
& quadType=GaussLegendreLobatto )
call display(x, "ans:")
end program main
program main
use easifembase
implicit none
integer( i4b ) :: i1, i2, order
real( dfp ), allocatable :: x(:,:)
type(string) :: astr
order=1
x = QuadraturePoint_Hexahedron( &
& order=order, &
& quadType=GaussChebyshev )
call display(x, "ans:")
order=2
x = QuadraturePoint_Hexahedron( &
& order=order, &
& quadType=GaussChebyshev )
call display(x, "ans:")
end program main
Interface 2
INTERFACE QuadraturePoint_Hexahedron
MODULE FUNCTION QuadraturePoint_Hexahedron2( &
& p, q, r, &
& quadType1, quadType2, quadType3, &
& xij, &
& alpha1, beta1, lambda1, &
& alpha2, beta2, lambda2, &
& alpha3, beta3, lambda3 &
& ) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: p
!! order of integrand in x direction
INTEGER(I4B), INTENT(IN) :: q
!! order of integrand in y direction
INTEGER(I4B), INTENT(IN) :: r
!! order of integrand in z direction
INTEGER(I4B), INTENT(IN) :: quadType1, quadType2, quadType3
!! quadrature point type in x direction
!! Equidistance
!! GaussLegendre
!! GaussLegendreLobatto
!! GaussLegendreRadauLeft
!! GaussLegendreRadauRight
!! GaussChebyshev1
!! GaussChebyshev1Lobatto
!! GaussChebyshev1RadauLeft
!! GaussChebyshev1RadauRight
!! GaussUltraspherical
!! GaussUltrasphericalLobatto
!! GaussUltrasphericalRadauLeft
!! GaussUltrasphericalRadauRight
!! GaussJacobi
!! GaussJacobiLobatto
!! GaussJacobiRadauLeft
!! GaussJacobiRadauRight
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! four vertices of quadrangle in xij format
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha1, beta1, lambda1
!! Jacobi parameter and Ultraspherical parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha2, beta2, lambda2
!! Jacobi parameter and Ultraspherical parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha3, beta3, lambda3
!! Jacobi parameter and Ultraspherical parameter
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! interpolation points in xij format
END FUNCTION QuadraturePoint_Hexahedron2
END INTERFACE QuadraturePoint_Hexahedron
p,q,rOrder of accuracy in x, y, and z directions.
quadType1, quadType2, quadType3Quadrature type in x, y, and z direction. It can take following values
GaussLegendreGaussLegendreLobattoGaussLegendreRadauLeftGaussLegendreRadauRightGaussChebyshevGaussChebyshevLobattoGaussChebyshevRadauLeftGaussChebyshevRadauRightGaussJacobiGaussJacobiLobattoGaussJacobiRadauLeftGaussJacobiRadauRightGaussUltrasphericalGaussUltrasphericalLobattoGaussUltrasphericalRadauLeftGaussUltrasphericalRadauRight
alpha, beta, and lambdaThese are parameters of Jacobi and Ultraspherical quadrature points.
Interface 3
INTERFACE QuadraturePoint_Hexahedron
MODULE FUNCTION QuadraturePoint_Hexahedron3(nips, quadType, &
& xij, alpha, beta, lambda) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: nips(1)
!! number of integration points in x, y, and z direction
INTEGER(I4B), INTENT(IN) :: quadType
!! interpolation point type
!! GaussLegendre
!! GaussLegendreLobatto
!! GaussLegendreRadauLeft
!! GaussLegendreRadauRight
!! GaussChebyshev1
!! GaussChebyshev1Lobatto
!! GaussChebyshev1RadauLeft
!! GaussChebyshev1RadauRight
!! GaussUltraspherical
!! GaussUltrasphericalLobatto
!! GaussUltrasphericalRadauLeft
!! GaussUltrasphericalRadauRight
!! GaussJacobi
!! GaussJacobiLobatto
!! GaussJacobiRadauLeft
!! GaussJacobiRadauRight
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! four vertices of quadrangle in xij format
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha
!! Jacobi parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: beta
!! Jacobi parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: lambda
!! Ultraspherical parameter
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! interpolation points in xij format
END FUNCTION QuadraturePoint_Hexahedron3
END INTERFACE QuadraturePoint_Hexahedron
nipsNumber of integration points in x, y, and z direction.
Interface 4
INTERFACE QuadraturePoint_Hexahedron
MODULE FUNCTION QuadraturePoint_Hexahedron4( &
& nipsx, nipsy, nipsz, &
& quadType1, quadType2, quadType3, &
& xij, &
& alpha1, beta1, lambda1, &
& alpha2, beta2, lambda2, &
& alpha3, beta3, lambda3 &
& ) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: nipsx(1)
!! order of integrand in x direction
INTEGER(I4B), INTENT(IN) :: nipsy(1)
!! order of integrand in y direction
INTEGER(I4B), INTENT(IN) :: nipsz(1)
!! order of integrand in z direction
INTEGER(I4B), INTENT(IN) :: quadType1, quadType2, quadType3
!! quadrature point type in x, y, and z direction
!! Equidistance
!! GaussLegendre
!! GaussLegendreLobatto
!! GaussLegendreRadauLeft
!! GaussLegendreRadauRight
!! GaussChebyshev1
!! GaussChebyshev1Lobatto
!! GaussChebyshev1RadauLeft
!! GaussChebyshev1RadauRight
!! GaussUltraspherical
!! GaussUltrasphericalLobatto
!! GaussUltrasphericalRadauLeft
!! GaussUltrasphericalRadauRight
!! GaussJacobi
!! GaussJacobiLobatto
!! GaussJacobiRadauLeft
!! GaussJacobiRadauRight
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! four vertices of quadrangle in xij format
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha1, beta1, lambda1
!! Jacobi and Ultraspherical parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha2, beta2, lambda2
!! Jacobi and Ultraspherical parameter
REAL(DFP), OPTIONAL, INTENT(IN) :: alpha3, beta3, lambda3
!! Jacobi and Ultraspherical parameter
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! interpolation points in xij format
END FUNCTION QuadraturePoint_Hexahedron4
END INTERFACE QuadraturePoint_Hexahedron
nipsx, nipsy, nipszNumber of integration points in x, y, and z direction.