Initiate
Initiate an instance of reference element
Interface
- ܀ Interface
- ️܀ See example
- ↢
INTERFACE
MODULE SUBROUTINE refelem_Initiate(obj, nsd, baseContinuity, baseInterpol)
CLASS(AbstractRefElement_), INTENT(INOUT) :: obj
INTEGER(I4B), INTENT(IN) :: nsd
!! Spatial dimension of element
CHARACTER(*), INTENT(IN) :: baseContinuity
!! Continuity or Conformity of basis function.
!! H1 * Default
!! HDiv
!! HCurl
!! DG
CHARACTER(*), INTENT(IN) :: baseInterpol
!! Basis function family used for interpolation
!! LagrangeInterpolation, LagrangePolynomial
!! SerendipityInterpolation, SerendipityPolynomial
!! HierarchyInterpolation, HierarchyPolynomial
!! OrthogonalInterpolation, OrthogonalPolynomial
!! HermitInterpolation, HermitPolynomial
END SUBROUTINE refelem_Initiate
END INTERFACE
baseInterpolIt represents the basis function family used for interpolation. Following values are possible:
LagrangeInterpolationLagrangePolynomialLagrangeSerendipityInterpolationSerendipityHierarchyInterpolationHierarchyPolynomialHierarchyOrthogonalInterpolationOrthogonalPolynomialOrthogonalHermitInterpolationHermitPolynomialHermit
PROGRAM main
USE easifemBase
USE easifemClasses
IMPLICIT NONE
TYPE(RefTetrahedron_) :: obj
CALL obj%Initiate(nsd=3, baseInterpol="Lagrange", baseContinuity="H1")
CALL Display(obj%MdEncode(), "")
END PROGRAM main
See results
| Element type | Tetrahedron4 |
| Xidimension | 3 |
| NSD | 3 |
| tPoints | 4 |
| tLines | 6 |
| tSurfaces | 4 |
| tVolumes | 1 |
| BaseContinuity | H1 |
| BaseInterpolation | LagrangeInterpolation |
Nodal Coordinates:
| x | 0 | 1 | 0 | 0 |
| y | 0 | 0 | 1 | 0 |
| z | 0 | 0 | 0 | 1 |
PointTopology( 1 ) :
| Element type | Point1 |
| Xidimension | 0 |
| Nptrs | 1 |
PointTopology( 2 ) :
| Element type | Point1 |
| Xidimension | 0 |
| Nptrs | 2 |
PointTopology( 3 ) :
| Element type | Point1 |
| Xidimension | 0 |
| Nptrs | 3 |
PointTopology( 4 ) :
| Element type | Point1 |
| Xidimension | 0 |
| Nptrs | 4 |
EdgeTopology( 1 ) :
| Element type | Line2 | |
| Xidimension | 1 | |
| Nptrs | 1 | 2 |
EdgeTopology( 2 ) :
| Element type | Line2 | |
| Xidimension | 1 | |
| Nptrs | 1 | 3 |
EdgeTopology( 3 ) :
| Element type | Line2 | |
| Xidimension | 1 | |
| Nptrs | 1 | 4 |
EdgeTopology( 4 ) :
| Element type | Line2 | |
| Xidimension | 1 | |
| Nptrs | 2 | 3 |
EdgeTopology( 5 ) :
| Element type | Line2 | |
| Xidimension | 1 | |
| Nptrs | 2 | 4 |
EdgeTopology( 6 ) :
| Element type | Line2 | |
| Xidimension | 1 | |
| Nptrs | 3 | 4 |
FaceTopology( 1 ) :
| Element type | Triangle3 | ||
| Xidimension | 2 | ||
| Nptrs | 1 | 3 | 2 |
FaceTopology( 2 ) :
| Element type | Triangle3 | ||
| Xidimension | 2 | ||
| Nptrs | 1 | 2 | 4 |
FaceTopology( 3 ) :
| Element type | Triangle3 | ||
| Xidimension | 2 | ||
| Nptrs | 1 | 4 | 3 |
FaceTopology( 4 ) :
| Element type | Triangle3 | ||
| Xidimension | 2 | ||
| Nptrs | 2 | 3 | 4 |
CellTopology( 1 ) :
| Element type | Tetrahedron4 | |||
| Xidimension | 3 | |||
| Nptrs | 1 | 2 | 3 | 4 |