Skip to main content

EquidistancePoint_Triangle

This function returns the nodal coordinates of higher order triangle element.

  • the layout is always "VEFC", that is, the node numbering is according to GMSH convention, VEFC.
  • coordinates are distributed uniformly
  • these coordinates can be used to construct Lagrange polynomials
  • the returned coordinates are in xiJx_{iJ} format.
VEFC layout

VEFC layout is a way to store the nodal coordinates of a triangle element. The layout is as follows:

  • First we store the coordinates of the vertices.
  • Then we store the coordinates of the edge midpoints.
  • Finally we store the coordinates of the face center.

Interface

INTERFACE
MODULE RECURSIVE PURE FUNCTION EquidistancePoint_Triangle(order, xij) RESULT(ans)
INTEGER(I4B), INTENT(IN) :: order
!! order
REAL(DFP), OPTIONAL, INTENT(IN) :: xij(:, :)
!! coordinates of point 1 and point 2 in $x_{iJ}$ format
!! number of rows = nsd
!! number of cols = 3
REAL(DFP), ALLOCATABLE :: ans(:, :)
!! returned coordinates in $x_{iJ}$ format
END FUNCTION EquidistancePoint_Triangle
END INTERFACE