Skip to main content

3 posts tagged with "dirichletBC"

View All Tags

Handling Dirichlet Bounding Conditions in easifem (Part 1)

· 3 min read
Vikas Sharma
Assistant Professor, Kyoto University, Japan

Introduction

To apply boundary condition in FEM computation, EASIFEM, provides a class called DirichletBC_.

info

DirichletBC_ is a subclass of AbstractBC.

To understand how DirichletBC works, lets consider an example of linear elasticity. Let's say we want to apply the following boundary condition.

u=U0, on Γ\mathbf{u} = \mathbf{U}_{0}, \text{ on } \Gamma

We may think that there is only one boundary condition. But in easifem this is not the case. Actually, u\mathbf{u}, has three components in 3D (and two components in 2D). Therefore, the above boundary condition is actually boundary condition for uxu_x, uyu_y, and uzu_z. So, we have three boundary condition on a given boundary Γ\Gamma.

Handling Dirichlet Bounding Conditions in easifem (Part 1)

· 6 min read
Vikas Sharma
Assistant Professor, Kyoto University, Japan

Introduction

To apply boundary condition in FEM computation, EASIFEM, provides a class called DirichletBC_.

info

DirichletBC_ is a subclass of AbstractBC.

To understand how DirichletBC works, lets consider an example of linear elasticity. Let's say we want to apply the following boundary condition.

u=U0, on Γ\mathbf{u} = \mathbf{U}_{0}, \text{ on } \Gamma

We may think that there is only one boundary condition. But in easifem this is not the case. Actually, u\mathbf{u}, has three components in 3D (and two components in 2D). Therefore, the above boundary condition is actually boundary condition for uxu_x, uyu_y, and uzu_z. So, we have three boundary condition on a given boundary Γ\Gamma.